CS 229 - Machine Learning

VIP Refresher: Linear Algebra and Calculus

l Smart

= We. . cRi L :
X@{ﬁﬁgenerlaq%ﬁ‘%ritarﬁ%wgerex Ristheithientry.

xn ()
r Matrix - We note A

€ Rmxn a matrix with m rows and n columns, where Ai,j € Ris the
entry located in the ith row and jth column:

ALL A1 n

A= ...

... €Rmxn
Am,1
-+ Am,n

Remark: the vector x defined above can be viewed as a n

x1 matrixand/smoreparticu/ar/yca//edaco{ﬂmn-vector.

r Identity matrix - The identity matrix |
ERnxnisasquarematrixwithonesinitsdiiﬁﬂrﬁﬁﬁjzeroeverywhereelse:
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Remark: for all matrices A 00000
ERnxn,wehaveAx|=IxA=A.

r Diagonal matrix - A diagonal matrix D
E€Rnxnisasquarematrixwithnonzerovaluesinitsdiagonalandzeroeverywhereelse:
d10

0 dn Z
Remark: we also note D as diag(d1,...,dn).

Matrix operations

r Vector-vector multiplication - There are two types of vector-vector products:

* inner product: for x,y
€ Rn, we have:

@#F%fﬁ‘%?ﬁ“: for x

(wehavexlyl--xly)nxyT+....ERmMxNxmyl---xmyn

r Matrix-vector multiplication - The product of matrix A
ﬁﬁr@ﬁgﬁqqggctorxe Rnisavectorofsize

0=

O00aTr,IxAx ..O0>n|=a x € Rmgc,iiaT x i=lr,m

where aT

" r,i are the vector rows and ac,j are the vector columns of A, and xi are the entries
ofx.

r Matrix-matrix multiplication - The product of matrices A
€ Rmxnand B € Rnxpisa

matrix of size Rnxp;sue

Ohthat:=
O0aTTr,1bc,V—artbepABESA——=abTERnxpc,ir,iaT,bc,1---aTbi=1rmr,|
where aT ,bT

el r,i r,iarethevectorrowsandac,j,bc,jarethevectorcolumnsofAandBrespec-

tively.

r Transpose - The transpose of a matrix A
ERmxn,notedAT,issuchthatitsentriesa[en|ppe0: ‘
Vij, ATi,j=Aj,i

Remark: for matrices A,B, we have (AB)T = BTAT.

r Inverse - The inverse of an invertible square matrix A is noted A-1 and is the only matrix
such that:

AA-1= A-TA = | |

Remark: not all square matrices are invertible. Also, for matrices A,B, we have (AB)-1 =
B-1A-1
r Trace - The trace of a square matrix A, note

Ydtr(A),isthesumofitsdiagonalentries:ntr(A)=Ai,ii="1

Remark: for matrices A,B, we have tr(AT) = tr(A) and tr(AB) = tr(BA)

r Determinant - The determinant of a square matrix A
€ Rnxn, noted |A| or det(A) is
expressedrecursivelyintermsofA ithjth

\i,\H', which is the matrix A without its row and
column, as follows:
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det(A) = s
[A[= (=1)i+]ALJIANL\]
j=1

Remark: A is invertible if and only if
|A] 6= 0. Also, |AB| = |AL|B|oand |[AI | = |A].

—~——— —~———

Matrix properties
r Symmetric decomposition - A given matrix A can be expressed in terms of its symmetric
and antisymmetric parts as follgws:
AATA
—ATA=++ - - - -

Symmetric Antisymmetric

r Norm - Anorm is a function N : V

-— [0, + [ where V is a vector space, and such that
for all x,y
€V, we have:

* N(x+y)6N(x)+N(y)

* N(ax)=

|a|N(x) for a scalar
«if N(x) = 0, thenx =0
Forx

€V, the most commonly use¢d norms are summed up in the table below:

Norm Notation D

YefinitionUsecasenMgnhattan,L1| | x| T11xi| LASSOregularization

WWi=1
VEuclidegn,L2T x| [2V3nx2iRidgerggularization

1]
-_—

(i=13)1npp-norm,Lp| | X| | xppiHolderinequality

lr]%'%hﬁ“:ax [xi[Uniformconvergencei

r Linearly dependence - A set of vectors is said to be linearly dependent if one of the vectors

in the Eet can be defined as a linear combination of the others. | , )
Remark: if no vector can be written this way, then the vectors are said to be linearly independent.

r Matrix rank - The rank of a given matrix A is noted rank(A) and is the dimension of the
vector space generated by its columns. This is equivalent to the maximum number of linearly
independent columns of A.

r Positive semi-definite matrix - A matrix A

€ Rnxn is positive semi-definite (PSD)

R0 AR T AX>0 |:| ‘

Remark: similarly, a matrix A is said to be positive definite, and is noted A

0, if itis a PSD
matrix which satisfies for all non-zero vector x, xTAx > 0.

r Eigenvalue, eigenvector - Given a matrix A

Rnxn, A is said to be an eigenvalue of A if
there exists a vector z
€ Rn\{0}, called eigenvector, such that we have:

Az = Az

L%Rm—rﬁﬂs‘symmavrr[ then A is diagonalizable by a real
orthogonal matrix U

€ Rnxn. By noting A = diag(A1,...,An), we have:
A diagonal, A = UAUT

r Singular-value decomposition - For a@A of dimensions m
x n, the singular-

value decomposition (SVD) is a factorization technique that guarantees the existence of Um
xm

r Spectral theorem - Let A

unitary,>m
x n diagonal and V n x n unitary matrices, such that:

A=UZVT

Matrix calculus

r Gradient - Let f : Rmxn

»RbeafuncAERmMxn f
with respectto Aisam
X N matrix

(tio,noted V)nandbeamatrix.ThegradientofAf(A),suchthat:)=0f(A) V Af(Ai,joAi,j

Remark: the gradient of f is only defined when f is a function that returns a scalar.
respecttoxisan

’—%Rbaifuncrauaudﬁxiwgm;}r. The hessian of f with
X n symmetricm
la{—H*He}%ed—V—Z*f%—SHfh{—HaF 62fL<—V—Z—)=(—)*f*Hé*ié*£

Remark: the hessian of f is only defined when f is a function that returns a scalar.

r Hessian - Let f: Rn

r Gradient operations - For matrices A,B,C, the following gradient properties are worth
having in mind:
Vtr(AB)=BTAVfATAT()=(V Af(A))

Vir(ABATC)=CAB+CTABTAV -1TA|A|=|A|(A)
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