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General notations
r Vector – We note x
∈Rnavectorwithnentries,wherex∈Ristheithientry:
x
x12
x = .
.∈Rn.
xn

r Matrix – We note A
∈ Rm×n a matrix with m rows and n columns, where Ai,j ∈ R is the

entry located in the ith row and jth column:
A1,1· · ·  A 1 , n
A= .. .
. .. ∈Rm×n
Am,1
· · ·  A m , n
Remark: the vector x defined above can be viewed as a n
×1matrixandismoreparticularlycalledacolumn-vector.
r Identity matrix – The identity matrix I
∈Rn×nisasquarematrixwithonesinitsdiagonalandzeroeverywhereelse:
1 0
· · · 0
.
I0.......=... .......0
0
· · ·  0  1
Remark: for all matrices A

∈Rn×n,wehaveA×I=I×A=A.
r Diagonal matrix – A diagonal matrix D
∈Rn×nisasquarematrixwithnonzerovaluesinitsdiagonalandzeroeverywhereelse:
d10
· · · 0
.
D=0.......... .......0
0
· · ·  0  d n
Remark: we also note D as diag(d1,...,dn).

Matrix operations
r Vector-vector multiplication – There are two types of vector-vector products:

• inner product: for x,y
∈ Rn, we have:

n

xTy= xiyi
∈ R
i=1

• outer product: for x
∈Rm,y∈Rn

(,wehave:x1y1···x1y)nxyT=......∈Rm×nxmy1···xmyn

r Matrix-vector multiplication – The product of matrix A
∈Rm×nandvectorx∈RnisavectorofsizeRm, such that:

=
 aTr , 1xAx . .    ∑n.  =  a  x  ∈  Rmc, i  iaT  x  i=1r ,m
where aT

r,i are the vector rows and ac,j are the vector columns of A, and xi are the entries
ofx.

r Matrix-matrix multiplication – The product of matrices A
∈ Rm×n and B ∈ Rn×p is a

matrix of size Rn×p, suc

hthat:=
aTTr , 1bc , 1 · · ·ar , 1bc ,pAB∑n. . . . . .=abT∈Rn×pc, i r , iaT ,bc , 1 · · ·aTbi=1rmr ,m
where aT ,bT

r,i r,iarethevectorrowsandac,j,bc,jarethevectorcolumnsofAandBrespec-
tively.

r Transpose – The transpose of a matrix A
∈Rm×n,notedAT,issuchthatitsentriesareflipped:
∀i,j, ATi,j=Aj,i

Remark: for matrices A,B, we have (AB)T = BTAT.

r Inverse – The inverse of an invertible square matrix A is noted A−1 and is the only matrix
such that:
AA−1 = A−1A = I

Remark: not all square matrices are invertible. Also, for matrices A,B, we have (AB)−1 =
B −1 A−1
r Trace – The trace of a square matrix A, note

∑dtr(A),isthesumofitsdiagonalentries:ntr(A)=Ai,ii=1

Remark: for matrices A,B, we have tr(AT) = tr(A) and tr(AB) = tr(BA)

r Determinant – The determinant of a square matrix A
∈ Rn×n, noted |A| or det(A) is

expressedrecursivelyintermsofA ithjth
\i,\j, which is the matrix A without its row and
column, as follows:

1

( )

( )








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det(A) =
| A | =  ( − 1 ) i + j A i , j | A \ i , \ j |
j=1

Remark: A is invertible if and only if
| A |  6 =  0 .  A l s o ,  | A B |  =  | A | | B |  a n d  | A T  |  =  | A | .

Matrix properties
r Symmetric decomposition – A given matrix A can be expressed in terms of its symmetric
and antisymmetric parts as follows:
AATA
−ATA=++

2 2
Symmetric Antisymmetric

r Norm – A norm is a function N : V
−→ [0, + ∞[ where V is a vector space, and such that
for all x,y
∈ V , we have:
• N(x+y)6N(x)+N(y)

• N(ax)=
|a|N(x) for a scalar
• if N(x) = 0, then x = 0

Forx
∈ V , the most commonly used norms are summed up in the table below:

Norm Notation D

∑efinitionUsecasenManhattan,L1||x||1|xi|LASSOregularization

√√i=1
√Euclidean,L2||x||2√∑nx2iRidgeregularization

(i=1∑)1npp-norm,Lp||x||xppiHölderinequalityi=1
Infinity,L∞||x||∞max|xi|Uniformconvergencei

r Linearly dependence – A set of vectors is said to be linearly dependent if one of the vectors
in the set can be defined as a linear combination of the others.
Remark: if no vector can be written this way, then the vectors are said to be linearly independent.

r Matrix rank – The rank of a given matrix A is noted rank(A) and is the dimension of the
vector space generated by its columns. This is equivalent to the maximum number of linearly
independent columns of A.

r Positive semi-definite matrix – A matrix A
∈ Rn×n is positive semi-definite (PSD) 

2

A=AT and
∀x∈Rn, xTAx>0
Remark: similarly, a matrix A is said to be positive definite, and is noted A

  0, if it is a PSD
matrix which satisfies for all non-zero vector x, xTAx > 0.

r Eigenvalue, eigenvector – Given a matrix A
∈ Rn×n, λ is said to be an eigenvalue of A if

there exists a vector z
∈ Rn\{0}, called eigenvector, such that we have:

Az = λz

r Spectral theorem – Let A
∈ Rn×n. If A is symmetric, then A is diagonalizable by a real

orthogonal matrix U
∈ Rn×n. By noting Λ = diag(λ1,...,λn), we have:

∃Λ diagonal, A = UΛUT

r Singular-value decomposition – For a given matrix A of dimensions m
× n, the singular-

value decomposition (SVD) is a factorization technique that guarantees the existence of U m
× m

unitary,Σm
× n diagonal and V n × n unitary matrices, such that:

A=UΣVT

Matrix calculus

r Gradient – Let f : Rm×n
→RbeafuncA∈Rm×n f

with respect to A is a m
× n matrix

(tio,noted∇)nandbeamatrix.ThegradientofAf(A),suchthat:)=∂f(A)∇Af(Ai,j∂Ai,j

Remark: the gradient of f is only defined when f is a function that returns a scalar.

r Hessian – Let f : Rn
→ R be a function and x ∈ Rn be a vector. The hessian of f with

respect to x is a n
× n symmetric m

(atrix,no)ted∇2xf(x),suchthat:(∂2fx∇2)=()xfxi,j∂xi∂xj

Remark: the hessian of f is only defined when f is a function that returns a scalar.

r Gradient operations – For matrices A,B,C, the following gradient properties are worth
having in mind:
∇tr(AB)=BTA∇fATAT()=(∇Af(A))

∇tr(ABATC)=CAB+CTABTA∇−1TA|A|=|A|(A)
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