VIP Refresher: Linear Algebra and Calculus ``` ftor . We have a tries wherex ∈ Ristheithientry: General notations x x12 x = . .∈Rn () r Matrix - We note A \in Rm×n a matrix with m rows and n columns, where Ai, i \in R is the entry located in the ith row and jth column: A1,1 A1,n A= ∈Rm×n Am,1 Remark: the vector x defined above can be viewed as a n ×1 matrix and is more particularly called a column-vector. r Identity matrix - The identity matrix I \in Rn \times nisas quare matrix with one sinits diagonal and zero everywhere else: :..:.0 0 ... 0 1 П Remark: for all matrices A \inRn×n,wehaveA×I=I×A=A. r Diagonal matrix - A diagonal matrix D €Rn×nisasquarematrixwithnonzerovaluesinitsdiagonalandzeroeverywhereelse: d10 . . . 0 D=0..... i...:.0 Remark: we also note D as diag(d1,...,dn). Matrix operations r Vector-vector multiplication – There are two types of vector-vector products: • inner product: for x,y \in Rn, we have: Stanford University ``` ``` • outer product: for x ∈Rm.√∈Rn (,wehave:xlyl···xly)nxyT‡......∈Rm×nxmyl···xmyn r Matrix-vector multiplication – The product of matrix A Rmxpandyectorx∈Rnisavectorofsize □= where aT r,i are the vector rows and ac,j are the vector columns of A, and xi are the entries ofx. r Matrix-matrix multiplication - The product of matrices A \in Rm×n and B \in Rn×p is a matrix of size Rn×p, suc □hthat:= □□aTTr,1bc,1···ar,1bc,pAB□∑n.....=abT∈Rn×pc,ir,iaT,bc,1···aTbi=1rmr, where aT,bT r,i r,iarethevectorrowsandac,j,bc,jarethevectorcolumnsofAandBrespec- tively. r Transpose - The transpose of a matrix A ∈Rm×n,notedAT,issuchthatitsentriesareflipped: ∀i,i, ATi,j=Aj,i Remark: for matrices A,B, we have (AB)T = BTAT. r Inverse – The inverse of an invertible square matrix A is noted A-1 and is the only matrix such that: AA-1 = A-1A = I Remark: not all square matrices are invertible. Also, for matrices A,B, we have (AB)-1 = B -1 A-1 r Trace - The trace of a square matrix A, note \(\sigma\text{dtr(A),isthesumofitsdiagonalentries:ntr(A)=Ai,ii=1}\) Remark: for matrices A,B, we have tr(AT) = tr(A) and tr(AB) = tr(BA) r Determinant - The determinant of a square matrix A \in Rn×n, noted |A| or det(A) is expressedrecursivelyintermsofA ithjth \i,\j, which is the matrix A without its row and column, as follows: ``` Fall 2018 | n | A=AI and
TXERN, xTAx>0 | |---|--| | $ det(A) = A = (-1)i + jAi, j A\setminus i, j $ | Remark: similarly, a matrix A is said to be positive definite, and is noted A | | j=1 | matrix which satisfies for all non-zero vector x , $xTAx > 0$. | | Remark: A is invertible if and only if $A = A = A = A = A = A = A = A = A = A =$ | r Eigenvalue, eigenvector – Given a matrix A | | Matrix properties | there exists a vector z \in Rn×n, λ is said to be an eigenvalue of A if \in Rn\{0}, called eigenvector, such that we have: | | r Symmetric decomposition – A given matrix A can be expressed in terms of its symmetric and antisymmetric parts as follows: | $Az = \lambda z$ | | AATA | r Spectral theorem – Let A | | -ATA=++ 2 2 | ERn×n. If A is symmetric, then A is diagonalizable by a real | | Symmetric Antisymmetric | orthogonal matrix U \subseteq Rn×n. By noting Λ = diag(λ 1,, λ n), we have: | | | $\exists \Lambda \text{ diagonal, } A = U\Lambda UT$ | | r Norm – A norm is a function N : V | | | $-\rightarrow$ [0, + ∞[where V is a vector space, and such that for all x,y | r Singular-value decomposition – For a given matrix A of dimensions m | | ∈ V , we have:• N(x+y)6N(x)+N(y) | × n, the singular-
value decomposition (SVD) is a factorization technique that guarantees the existence of U m | | | × m unitary,Σm | | • N(ax)=
 a N(x) for a scalar | × n diagonal and V n × n unitary matrices, such that: | | • if N(x) = 0, then x = 0 | Α=UΣVΤ | | Forx \subseteq V, the most commonly used norms are summed up in the table below: | Makein calculus | | Norm Notation D | Matrix calculus | | Norm Notation D | r Gradient – Let f : Rm×n
→RbeafuncA∈Rm×n f | | \sum efinitionUsecasenManhattan,L1 x +1+xi LASSOregularization | with respect to A is a m × n matrix | | | | | √√i=1 | (tio,noted ∇)nandbeamatrix. The gradient of $Af(A)$, such that:)= $\partial f(A) \nabla Af(Ai,j\partial Ai,j\partial A$ | | √Euclidean,L2 x 2√∑nx2iRidgeregularizati <u>o</u> n | Remark: the gradient of f is only defined when f is a function that returns a scalar. | | | r Hessian – Let f : Rn | | | \rightarrow R be a function and $x \in Rn$ be a vector. The hessian of f with | | (i=1∑)1npp-norm,Lp x xppiHölderinequality =1 | respect to x is a n
× n symmetric m | | Infinity,L∞ | | | | (atrix,no)ted ∇2xf(x),suchthat:(∂2f k∇2)=()xfxi,j∂xi∂x j | | r Linearly dependence – A set of vectors is said to be linearly dependent if one of the vectors | Remark: the hessian of f is only defined when f is a function that returns a scalar. | | in the set can be defined as a linear combination of the others.
Remark: If no vector can be written this way, then the vectors are said to be linearly independent. | r Gradient operations – For matrices A,B,C, the following gradient properties are worth | wing gradient properties are worth having in mind: $\nabla tr(AB)=BTA\nabla fATAT()=(\nabla Af(A))$ $\nabla \text{tr}(ABATC) = CAB + CTABTA \nabla - 1TA|A| = |A|(A)$ r Positive semi-definite matrix – A matrix A r Matrix rank – The rank of a given matrix A is noted rank(A) and is the dimension of the vector space generated by its columns. This is equivalent to the maximum number of linearly independent columns of ${\sf A}$. ∈ Rn×n is positive semi-definite (PSD)